فارکس چیست Forex

اعداد فیبوناچی و اسرار آن


هیئت محبان حضرت علی اکبر(ع) کرج
هر هفته سه شنبه شب ها با سخنرانی شیخ مهدی شیبانی ومداحی حاج مهدی فریدونی ،کربلایی مهدی افشار ،کربلایی ابوالفضل دشتگی ،کربلایی میثم رضاوند، کربلایی شهرام ممانی ومداحان اهل بیت ساعت 20:30
مکان: میدان کرج خ شهربانی سه راه طاق نصرت اسلام آباد منطقه 2 کوچه انقلاب حسینیه پنج تن آل عبا(ع)سامانه پیام کوتاه 30007211111163
روابط عمومي:
09190096943
09121220745
آدرس شبکه های اجتماعی اینستگرام ، تلگرام ،سروش
heyaatmohebanaliakbar

هیئت محبان حضرت علی اکبر(ع) کرج

اعداد فیبوناچی در هستی کشف شده اند. در قسمت لاک حلزون از زاویه فی استفاده شده است. شاخ و برگ درخت ها به صورت تصادفی در جهات مختلف رشد نمی کنند. اندازه گیری زاویه شاخه ها نشان می دهد که در الگوی رشد آن ها، نظمی شبیه دنباله فیبوناچی و نسبت طلایی وجود دارد.

سری فیبوناچی

اگر به ریاضیات علاقه داشته باشید، حتما با "سری فیبوناچی" آشنا هستید. سری فیبوناچی رشته ‌ای از اعداد است که در آن اعداد غیر از دو عدد اول با محاسبه‌ ی مجموع دو عدد قبلی ایجاد می‌شوند.

اولین اعداد سری فیبوناچی عبارت‌اند از: ۰٬ ۱٬ ۱٬ ۲٬ ۳٬ ۵٬ ۸٬ ۱۳٬ ۲۱٬ ۳۴٬ ۵۵٬ ۸۹٬ ۱۴۴٬ ۲۳۳٬ ۳۷۷٬ ۶۱۰٬ ۹۸۷٬ ۱۵۹۷٬ ۲۵۸۴٬ ۴۱۸۱ "عدد فی" از دنباله ی فیبوناچی مشتق شده است، تصاعد مشهوری که شهرتش تنها به این دلیل نیست که هرجمله با مجموع دو جمله ی پیشین خود برابری می کند. بلکه به این دلیل است که خارج قسمت هر دو جمله ی کنار هم خاصیت حیرت انگیزی نزدیک به عدد 1.618 را دارد که به "نسبت طلایی" مشهور است.

این اعداد به نام لئوناردو فیبوناچی ریاضیدان ایتالیایی نام گذاری شده‌است. وی نخستین ریاضیدان بزرگ اروپا در قرن سیزدهم است که بیشتر فعالیت هایش از آثار ریاضیدان‌های مسلمان به خصوص خوارزمی، کرجی و ابوکامل تأثیر پذیرفته است.در دوران حیات فیبوناچی مسابقات ریاضی در اروپا بسیار مرسوم بود در اعداد فیبوناچی و اسرار آن یکی از همین مسابقات که در سال ۱۲۲۵ در شهر پیزا توسط امپراتور فردریک دوم برگزار شده بود مسئله زیر مطرح شد:

«فرض کنیم خرگوش‌هایی وجود دارند که هر جفت (یک نر و یک ماده) از آنها که به سن ۱ ماهگی رسیده باشند به ازاء هر ماه که از زندگی‌شان سپری شود یک جفت خرگوش متولد می‌کنند که آنها هم از همین قاعده پیروی می‌کنند حال اگر فرض کنیم این خرگوشها هرگز نمی‌میرند و در آغاز یک جفت از این نوع خرگوش در اختیار داشته باشیم که به تازگی متولد شده‌اند حساب کنید پس از n ماه چند جفت از این نوع خرگوش خواهیم داشت.»

حال اگر تعداد خرگوش ها را در ماههاي اول و دوم و . حساب كنيم به دنباله زیر خواهیم رسید که به دنباله فیبوناچی مشهور است. ۱, ۱, ۲, ۳, ۵, ۸, ۱۳, ۲۱, ۳۴, ۵۵, ۸۹, ۱۴۴, ۲۳۳, ۳۷۷, ۶۱۰, ۹۸۷, ۱۵۹۷, ۲۵۸۴,… فیبوناچی با حل این مسئله از راه حل فوق دنباله حاصل را به جهان ریاضیات معرفی کرد که خواص شگفت‌انگیز و کاربردهای فراوان آن تا به امروز نه تنها نظر ریاضی‌دانان بلکه دانشمندان بسیاری از رشته‌های دیگر را به خود جلب کرده است.

در قسمت لاک حلزون از زاویه فی استفاده شده است

اعداد فیبوناچی در قالب طبیعت

با وجود گستردگی طبیعت و وجود انواع موجودات پیرامون انسان‌ها، نظم خاصی بر همه چیز حاکم است که با پیشرفت علوم بشری، این نظم بیش از پیش مشخص‌تر می‌شود. شاید در زمان یادگیری برخی از مفاهیم علمی، بسیاری از موارد بی معنی به نظر برسد، اما نظم خاصی در پشت همه چیز نهفته است. ریاضیات یکی از علوم پایه است که کشف اسرار آن، کلید حل معمای موجود در طبیعت است.

اعداد فیبوناچی در هستی کشف شده اند. در قسمت لاک حلزون از زاویه فی استفاده شده است. شاخ و برگ درخت ها به صورت تصادفی در جهات مختلف رشد نمی کنند. اندازه گیری زاویه شاخه ها نشان می دهد که در الگوی رشد آن ها، نظمی شبیه دنباله فیبوناچی و نسبت طلایی وجود دارد. درختان با پیروی از این نوع الگوی رشد، قادرند درصد بیشتری از نور خورشید را جذب کنند.

نسبت طلایی (1.618) در ساختار آفتابگردان نیز بکار رفته است

دانه های آفتابگردان به شکل مارپیچ هایی روبروی هم رشد می کنند. طبق تحقیقات انجام شده نسبت قطر هر مارپیچ به مارپیچ بعدی 1.618 است. حتی در ساختار شکل گوش ما هم از این اعداد تبعیت شده است.

نسبت طلایی (1.618) در آناتومی بدن انسان نیز بکار رفته است. اگر قد خود را بر فاصله عمودی ناف تا نوک انگشتان خود تقسیم کنید، تقریبا عدد 1.618 را بدست می‌آورید. با تقسیم طول بازوی خود از نوک انگشت بزرگ تا بالای شانه، بر فاصله نوک انگشت بزرگ تا آرنج خود نیز به این نسبت می‌رسید. از آنجایی که این نسبت در بسیاری از اندازه‌های بدن انسان وجود دارد، از آن به نام نسبت الهی نیز یاد می‌شود.

علاوه بر طبیعت، از زمان باستان بسیاری از هنرمندان و معماران نیز از رابطه‌های ریاضی و هندسی در آثار خود استفاده می‌کردند. برای مثال می‌توان به آثار تاریخی باقی مانده از دوران مصر باستان، یونان و رم اشاره کرد. مثلا معبد معروف پارتنون بهترین مثال از کاربرد نسبت طلایی (1.618) است. نسبت عرض به طول پنجره‌های مستطیل شکل معبد همگی برابر نسبت طلایی است. در اهرام مصر نیز این نسبت بخوبی رعایت شده است. طول هر ضلع قاعده هرکدام از اهرام به ارتفاع آن، معادل نسبت طلایی می‌باشد.
گردآوری : بخش علمی بیتوته

درباره وبلاگ


هیئت محبان حضرت علی اکبر(ع) کرج
هر هفته سه شنبه شب ها با سخنرانی شیخ مهدی شیبانی ومداحی حاج مهدی فریدونی ،کربلایی مهدی افشار ،کربلایی ابوالفضل دشتگی ،کربلایی میثم رضاوند، کربلایی شهرام ممانی ومداحان اهل بیت ساعت 20:30
مکان: میدان کرج خ شهربانی سه راه طاق نصرت اسلام آباد منطقه 2 کوچه انقلاب حسینیه پنج تن آل عبا(ع)سامانه پیام کوتاه 30007211111163
روابط عمومي:
09190096943
09121220745
آدرس شبکه های اجتماعی اینستگرام ، تلگرام ،سروش
heyaatmohebanaliakbar

آنچه باید درباره فیبوناچی بدانید

پول نیوز - لئوناردو فیبوناچی (Leonardo Fibonacci) در سال ۱۱۷۵م متولد شد و نخستین ریاضیدان بزرگ اروپا در قرن سیزدهم میلادی است.

به گزارش واحد آموزش پول نیوز، وی به‌دلیل مطرح کردن موضوع «ترتیب اعداد» مورد توجه قرار گرفت. یکی از کار‌های او معرفی سری معروف فیبوناچی است که پس از مراجعت از سفرش به مصر در کتابی به نام کتاب حساب آن را معرفی کرد. نسبت‌های معروف فیبوناچی در طبیعت و در اعضای بدن انسان و. نمایانگر اعتبار سری اعداد فیبوناچی و نسبت‌های آن است. ترتیب اعدادی که فیبوناچی سال‌ها قبل بر آن‌ها تأکید کرد، در بازار‌های مالی و بورس کاربرد فراوانی برای تحلیلگران دارد.

عجایب اعداد فیبوناچی

«عدد فی یا عدد طلایی» از دنباله فیبوناچی مشتق شده است، تصاعد مشهوری که شهرتش تنها به این دلیل نیست که هر جمله با مجموع دو جمله پیشین خود برابری می‌کند، بلکه به این دلیل است که خارج قسمت هر دو جمله به جمله ماقبلش عدد طلایی ۱.۶۱۸ است که به «نسبت طلایی» یا «عدد فی» مشهور است.

لازم است بدانید اولین اعداد این سری عبارت‌اند از:

۱،۱،۲،۳،۵،۸،۱۳،۲۱،۳۴،۵۵،۸۹،۱۴۴،۲۳۳
چرا این دنباله اعداد مشهور شده است؟

سری فیبوناچی رشته‌ای از اعداد است که در آن اعداد غیر از دو عدد اول با محاسبه مجموع دو عدد قبلی ایجاد می‌شوند.

با وجود گستردگی طبیعت و وجود انواع موجودات پیرامون انسان‌ها، نظم خاصی بر همه‌چیز حاکم است که با پیشرفت علوم بشری، این نظم بیش‌ازپیش مشخص‌تر می‌شود. شاید در زمان یادگیری مفاهیم علمی، بسیاری از موارد بی‌معنی به نظر برسد، اما نظم خاصی در پشت همه‌چیز نهفته است.

ریاضیات یکی از علوم پایه است که کشف اسرار آن، کلید حل معمای موجود در طبیعت است.

همان‌طور که اشاره شد این اعداد در هستی کشف شده‌اند. در قسمت لاک حلزون از زاویه «فی» استفاده شده است. شاخ و برگ درخت‌ها به‌صورت تصادفی در جهات مختلف رشد نمی‌کنند. اندازه‌گیری زاویه شاخه‌ها نشان می‌دهد که در الگوی رشد آن‌ها، نظمی شبیه دنباله فیبوناچی و نسبت طلایی وجود دارد. درختان با پیروی از این نوع الگوی رشد، قادر هستند درصد بیشتری از نور خورشید را جذب کنند.

دانه‌های آفتابگردان به شکل مارپیچ‌هایی روبروی هم رشد می‌کنند. طبق تحقیقات انجام شده نسبت قطر هر مارپیچ به مارپیچ بعدی ۱.۶۱۸ است. برای درک بهتر مفهوم این اعداد به مثال‌ها و تصاویری که در ادامه می‌آید توجه کنید.

تشکیل مارپیچ با اعداد دنباله‌ی فیبوناچی

همان‌طور که در تصاویر زیر می‌بینید اگر با اعداد دنباله فیبوناچی مربع‌هایی بسازیم، ملاحظه می‌کنید که مربع‌ها چگونه به‌طور منظم و مرتب کنار هم جای می‌گیرند؛ مثلا مربع‌های یک و یک مربع دو را می‌سازند؛ مربع‌های پنج و هشت مربع ۱۳ را ایجاد می‌کنند؛ مربع‌های هشت و ۱۳ مربع ۲۱ را می‌سازند و به همین منوال ادامه می‌یابد. سپس اگر به‌اندازه‌ی طول ضلع مربع‌ها کمان‌هایی رسم شود، در نهایت یک مارپیچ بدست می‌آید که به‌سرعت رشد می‌کند.

آنچه باید درباره فیبوناچی بدانید

معمای زادوولد خرگوش فیبوناچی

برای درک بهتر مفهوم اعداد فیبوناچی به این مثال توجه کنید. فیبوناچی قصد داشت بررسی کند که اگر یک جفت خرگوش نر و ماده داشته باشید، میزان زادوولد آن‌ها چطور خواهد بود.

تصور کنید خرگوش‌ها همین حالا به دنیا آمده‌اند و پس از یک ماه بالغ می‌شوند، دوران بارداری خرگوش ماده یک ماه است و هنگامی‌که به این سن برسد باردار می‌شود. پس‌ازآن یک خرگوش ماده و یک نر به دنیا می‌آیند و البته فرض می‌شود که خرگوش‌ها هرگز نمی‌میرند. به‌این‌ترتیب پس از یک سال چه تعداد خرگوش ماده و چه تعداد نر خواهیم داشت؟

او Fn را برابر با تعداد جفت‌های زاد و ولد شده در ماه n اُم در نظر گرفت. در نتیجه در ماه اول یک جفت، در ماه دوم یک جفت جدید و در ماه سوم هر یک از دو جفت اول یک جفت جدید زاد و ولد می‌کنند، به همین ترتیب هر جفت خود می‌تواند پس از یک ماه جفت دیگری را به دنیا آورد و الگوی تعداد جفت‌های جدید مطابق سری اعداد فیبوناچی است.

آنچه باید درباره فیبوناچی بدانید

سری فیبوناچی برای الگوی تولید مثل خرگوش به صورت زیر است:
۱،۱،۲،۳،۵،۸،۱۳،۲۱،۳۴،۵۵،۸۹،۱۴۴،۲۳۳
سری فیبوناچی چیست؟

سری فیبوناچی رشته‌ای از اعداد است که در آن اعداد غیر از دو عدد اول با محاسبه مجموع دو عدد قبلی ایجاد می‌شوند. در تصویر زیر مشاهده می‌کنید که هر عدد در این تصاعد، حاصل جمع دو عدد قبلی با یکدیگر است.

آنچه باید درباره فیبوناچی بدانید

همان‌طور که اشاره شد «عدد فی» از دنباله فیبوناچی مشتق شده است، سری مشهوری که شهرتش تنها به این دلیل نیست که هر جمله با مجموع دو جمله‌ی پیشین خود برابری می‌کند، بلکه به این دلیل است که خارج‌قسمت هر دو جمله‌ی کنار هم خاصیت حیرت‌انگیزی نزدیک به عدد ۱.۶۱۸ را دارد که به «نسبت طلایی» مشهور است. به‌عنوان‌مثال تقسیم ۸۹ بر ۵۵ یا ۱۴۴ بر ۸۹ یا ۲۳۳ بر ۱۴۴ همگی برابر با ۱.۶۱۸ می‌شود.

کاربرد فیبوناچی در تحلیل تکنیکال سهام

حال که با مفهوم سری اعداد فیبوناچی آشنا شدید، لازم است با کاربرد آن در تحلیل تکنیکال بازار سهام آشنا شوید. امروزه برای معامله‌گران این موضوع اهمیت دارد که بفهمند چگونه این اعداد وارد بازی سهام می‌شوند و نقش خود را در بازار بر عهده می‌گیرند.

در ابتدای ایجاد یک بازار، منطقی است که بگوییم کاری که در بازار‌ها انجام می‌شود، بسیار ساده است. افراد با خریدوفروش‌های خود یک بازار را به وجود می‌آورند؛ اما به‌تدریج پیچیدگی بازار‌ها افزایش می‌یابد. در حال حاضر بسیاری از خبرگان بازار سهام چیزی را نمی‌خرند، به دلیل اینکه «احساس می‌کنند آن را دوست دارند یا ندارند». اکنون تحلیلگران تکنیکال سعی می‌کنند سریع و دقیق‌تر به این نکته پی‌ببرند که در چه نقطه‌ای از نمودار باید وارد و در چه نقطه‌ای از آن خارج شد.

درصورتی‌که به پیچیدگی بازار اعتقاد داشته باشیم، منطقی است که بیشتر معامله‌گران در آینده‌ای نزدیک به‌طرف روش‌های علمی‌تر برای معاملات خود سوق پیدا کنند. قبول اهمیت نقاط فیبوناچی توسط معامله‌گران درنهایت به‌جایی ختم می‌شود که هرگاه نمودار به سمت این نقاط حرکت می‌کند، معامله‌گران بتوانند رفتار آن را پیش‌گویی کنند.

با این تفاسیر می‌توان گفت که انواع ابزار‌های فیبوناچی در بازار‌های مالی، روشی برای تحلیل بازگشت یا ادامه روند هستند. از منظری انواع ابزار‌های فیبوناچی نقاط حمایت و مقاومت هستند که با ابزار‌ها و روش‌های گوناگون رسم می‌شوند.

این سطوح بازگشت برخلاف حمایت و مقاومت‌های قبلی که تنها قیمتی خاص را نقطه حساس تلقی می‌کردند می‌توانند قیمتی خاص، خطی مورب یا زمان خاصی را نقطه حساس حمایت یا مقاومت تعریف کنند. در استفاده از ابزار‌های فیبوناچی درصد‌ها اهمیتی فوق‌العاده دارند.

عموم این درصد‌ها از نسبت درصد‌های بین اعداد فیبوناچی به دست می‌آیند. به‌غیراز چند عدد ابتدای سری اعداد فیبوناچی، هرکدام از اعداد دنباله، تقریبا ۱٫۶۱۸ برابر عدد قبل از خود هستند (نسبت طلایی) و هر عدد ۰٫۶۱۸ برابر عدد بعد از خود است.

این نسبت‌ها به درصد به ترتیب ۱۶۱٫۸ درصد و ۶۱٫۸ درصد می‌شوند. درصد‌های دیگری نیز مهم هستند که در ادامه می‌آید. تقسیم عدد اول به عدد دوم سری اعداد فیبوناچی یک‌به‌یک یا به عبارتی ۱۰۰ درصد را نشان می‌دهد.

تقسیم عدد دوم به عدد سوم سری اعداد فیبوناچی ۰٫۵ یا به‌عبارتی ۵۰ درصد را نشان می‌دهد.

در اعداد بالاتر سری اعداد فیبوناچی و تقسیم هر عدد به دو عدد بعد از آن، مشاهده می‌شود حاصل تقسیم به ۳۸٫۲ درصد تمایل می‌کند. در اعداد بالاتر سری اعداد فیبوناچی و تقسیم هر عدد به سه عدد بعد از آن، مشاهده می‌شود حاصل تقسیم به ۲۳٫۶ درصد تمایل دارد.

نمودار زیر نشان می‌دهد که روند قیمتی در بازگشت و تصحیح در محدوده‌های ۲۳.۶ درصد، ۳۸.۲ درصد و ۵۰ درصد واکنش نشان داده است.

شروع سرمایه‌گذاری در سهام – قسمت سی و پنجم

در قسمت‌های قبل، اجزای مختلف تحلیل تکنیکال بررسی شد. در این قسمت، در مورد فیبوناچی و تحلیل تکنیکال بحث خواهد شد.

فیبوناچی چیست؟
لئوناردو فیبوناچی۱ یک ریاضیدان بزرگ اروپایی بود. یکی از آثار او معرفی دنباله معروف فیبوناچی است. این دنباله با عدد صفر و یک شروع می‌شود و هر عدد از مجموع دو عدد قبلی به‌دست می‌آید.

همان‌طور‌که در بالا نشان داده شد،‌ هر عدد حاصل‌جمع دو عدد قبلی خود است و می‌توان فرمول فیبوناچی را به‌صورت زیر نوشت:

چرا این دنباله اعداد مشهور شد؟
در طبیعت نظم خاصی وجود دارد. ریاضیات یکی از علوم پایه است که کشف اسرار آن،‌ کلید حل معمای موجود در طبیعت است. از عجایب اعداد فیبوناچی می‌توان به عدد فی اشاره کرد. همچنین نکته‌ جالب در مورد این دنباله از اعداد، این است که به‌غیر از چند عدد ابتدایی، بقیه اعداد دنباله ‌تقریباً ۱/۶۱۸ برابر عدد قبل از خود و ۰/۶۱۸ برابر عدد بعد از خود می‌باشند. این نسبت‌ها به درصد به ترتیب ۱۶۱/۸ درصد و ۶۱/۸ درصد می‌شوند.
به‌عنوان مثال، برای نشان دادن حاصل‌تقسیم هر جمله دنباله بر جمله قبل از آن، جمله یازدهم (عدد ۸۹) را بر جمله دهم (۵۵) تقسیم می‌کنیم:

همچنین، از تقسیم هر جمله دنباله بر جمله بعد از آن، عدد ۶۱/۸ درصد به‌دست می‌آید که در مثال زیر نشان داده است:
تقسیم جمله دهم بر جمله یازدهم

حاصل‌تقسیم هر جمله بر دومین جمله پس از آن به‌صورت زیر است:
تقسیم جمله دهم بر جمله دوازدهم

از تقسیم هر جمله بر سومین جمله پس از آن، نسبت زیر حاصل می‌شود:
تقسیم جمله دهم بر جمله سیزدهم

از دیگر اعداد مهم فیبوناچی می‌توان به ۷۸/۶%، ۱۲۷/۲%، ۲۶۱/۸% اشاره کرد که عبارتند از:

کاربرد فیبوناچی در بازار سهام چگونه است؟
دنباله اعداد فیبوناچی در تحلیل تکنیکال و بازار سهام برای پیش‌‌بینی روند قیمت‌ها استفاده می‌شود. تحلیل‌گران پس از بررسی نمودارهای قیمت سهم، به وجود رابطه بین ترازهای فیبوناچی و نمودارها دست یافتند. ترازهای فیبوناچی در بازارهای مالی، روشی برای تحلیل بازگشت یا ادامه روند و در واقع نقاط حمایت و مقاومت می‌باشند که به طرق گوناگون رسم می‌شوند. برای قرار دادن ترازهای فیبوناچی در نمودار، ابتدا باید مقادیر حداکثر و حداقل مهم نمودار را بیابیم. این امر نیازمند بازگشت به‌ چند روز یا حتی چند هفته قبل است.
به‌طور کلی، انواع مختلف فیبوناچی که در بازارهای مالی کاربرد دارند عبارتند از:

۱) فیبوناچی بازگشتی۲
فیبوناچی بازگشتی داخلی۳
فیبوناچی بازگشتی خارجی۴
۲) فیبوناچی پروجکشن (بازتاب‌دهنده)

فیبوناچی بازگشتی چیست؟
بازار به‌طور معمول پس از هر حرکت قوی و قبل از ادامه حرکت،‌ اقدام به بازگشت می‌کند که این بازگشت می‌تواند داخلی یا خارجی باشد؛ یعنی ممکن است بازار تا بخشی از حرکت خود بازگشت کند و آنگاه به حرکت قبلی خود بازگردد (‌بازگشت داخلی) (شکل ۱)، یا اینکه تمام یا حتی بیشتر از حرکت خود را بازگردد و آنگاه حرکت قبلی خود در یک جهت خاص را مجدداً ادامه دهد (بازگشت خارجی) (شکل ۲).

چگونه می‌توان با استفاده از فیبوناچی بازگشتی معامله کرد؟
به‌منظور انجام معامله با استفاده از فیبوناچی بازگشتی داخلی، بهتر است واکنش قیمت در سطوح مورد‌نظر را بررسی کرد و به‌محض مشاهده علائم برگشتی، در جهت روند غالب بازار وارد شد. به‌عنوان مثال، قیمت سهمی از ۱,۵۸۳ ریال به ۱,۶۷۵ ریال رسیده ‌است و اکنون در حال برگشت به پایین می‌باشد. برای درک اینکه قیمت احتمالاً تا چه سطحی افت و دوباره به سمت بالا حرکت می‌کند، می‌توان از فیبوناچی استفاده نمود. در نرم‌افزار تحلیل تکنیکال، باید از ابتدای حرکت یعنی ۱,۵۸۳ ریال تا انتهای آن یعنی ۱,۶۷۵ ریال را ترسیم کرد. در ترازهای فیبوناچی، مقادیر احتمالی برای تغییر جهت و صعود قیمت را می‌توان حدس زد.
برای انجام معامله با استفاده از فیبوناچی بازگشتی خارجی،‌ بهتر است واکنش قیمت در سطوح مورد‎نظر این فیبوناچی (۱۲۷ و ۱۶۱ درصد) را زیر نظر داشت و به‌محض مشاهده علائم بازگشتی، در جهت روند غالب بازار معامله کرد.

فیبوناچی پروجکشن چیست؟
ابزار فیبوناچی پروجکشن،‌ برای به‌دست آوردن اهداف قیمت و یافتن نقاط ورود به‌کار می‌رود. نقاط بازگشت بیش از ۱۰۰ درصد هر موج را نمایش می‌دهد؛ با این تفاوت که میزان بازگشت تصحیح قیمت در یک موج برای به‌دست آوردن نقاط بالای ۱۰۰ درصد آن روند اهمیت دارد. یک تفاوت عمده فیبوناچی پروجکشن این است که برای رسم آن از سه نقطه استفاده می‌شود.

عجایب اعداد فیبوناچی

عجایب اعداد فیبوناچی

اعداد فیبوناچی در هستی کشف شده اند. در قسمت لاک حلزون از زاویه فی استفاده شده است. شاخ و برگ درخت ها به صورت تصادفی در جهات مختلف رشد نمی کنند. اندازه گیری زاویه شاخه ها نشان می دهد که در الگوی رشد آن ها، نظمی شبیه دنباله فیبوناچی و نسبت طلایی وجود دارد.

سری فیبوناچی

اگر به ریاضیات علاقه داشته باشید، حتما با "سری فیبوناچی" آشنا هستید. سری فیبوناچی رشته ‌ای از اعداد است که در آن اعداد غیر از دو عدد اول با محاسبه‌ ی مجموع دو عدد قبلی ایجاد می‌شوند.

اولین اعداد سری فیبوناچی عبارت‌اند از:

۰٬ ۱٬ ۱٬ ۲٬ ۳٬ ۵٬ ۸٬ ۱۳٬ ۲۱٬ ۳۴٬ ۵۵٬ ۸۹٬ ۱۴۴٬ ۲۳۳٬ ۳۷۷٬ ۶۱۰٬ ۹۸۷٬ ۱۵۹۷٬ ۲۵۸۴٬ ۴۱۸۱

"عدد فی" از دنباله ی فیبوناچی مشتق شده است، تصاعد مشهوری که شهرتش تنها به این دلیل نیست که هرجمله با مجموع دو جمله ی پیشین خود برابری می کند. بلکه به این دلیل است که خارج قسمت هر دو جمله ی کنار هم خاصیت حیرت انگیزی نزدیک به عدد 1.618 را دارد که به "نسبت طلایی" مشهور است.

این اعداد به نام لئوناردو فیبوناچی ریاضیدان ایتالیایی نام گذاری شده‌است. وی نخستین ریاضیدان بزرگ اروپا در قرن سیزدهم است که بیشتر فعالیت هایش از آثار ریاضیدان‌های مسلمان به خصوص خوارزمی، کرجی و ابوکامل تأثیر پذیرفته است.در دوران حیات فیبوناچی مسابقات ریاضی در اروپا بسیار مرسوم بود در یکی از همین مسابقات که در سال ۱۲۲۵ در شهر پیزا توسط امپراتور فردریک دوم برگزار شده بود مسئله زیر مطرح شد:

«فرض کنیم خرگوش‌هایی وجود دارند که هر جفت (یک نر و یک ماده) از آنها که به سن ۱ ماهگی رسیده باشند به ازاء هر ماه که از زندگی‌شان سپری شود یک جفت خرگوش متولد می‌کنند که آنها هم از همین قاعده پیروی می‌کنند حال اگر فرض کنیم این خرگوشها هرگز نمی‌میرند و در آغاز یک جفت از این نوع خرگوش در اختیار داشته باشیم که به تازگی متولد شده‌اند حساب کنید پس از n ماه چند جفت از این نوع خرگوش خواهیم داشت.»

حال اگر تعداد خرگوش ها را در ماههای اول و دوم و . حساب کنیم به دنباله زیر خواهیم رسید که به دنباله فیبوناچی مشهور است.

۱ , ۱, ۲, ۳, ۵, ۸, ۱۳, ۲۱, ۳۴, ۵۵, ۸۹, ۱۴۴, ۲۳۳, ۳۷۷, ۶۱۰, ۹۸۷, ۱۵۹۷, ۲۵۸۴,…
فیبوناچی با حل این مسئله از راه حل فوق دنباله حاصل را به جهان ریاضیات معرفی کرد که خواص شگفت‌انگیز و کاربردهای فراوان آن تا به امروز نه تنها نظر ریاضی‌دانان بلکه دانشمندان بسیاری از رشته‌های دیگر را به خود جلب کرده است.

اعداد فیبوناچی, سری فیبوناچی,عجایب اعداد فیبوناچی

در قسمت لاک حلزون از زاویه فی استفاده شده است

اعداد فیبوناچی در قالب طبیعت

با وجود گستردگی طبیعت و وجود انواع موجودات پیرامون انسان‌ها، نظم خاصی بر همه چیز حاکم است که با پیشرفت علوم بشری، این نظم بیش از پیش مشخص‌تر می‌شود. شاید در زمان یادگیری برخی از مفاهیم علمی، بسیاری از موارد بی معنی به نظر برسد، اما نظم خاصی در پشت همه چیز نهفته است. ریاضیات یکی از علوم پایه است که کشف اسرار آن، کلید حل معمای موجود در طبیعت است.

اعداد فیبوناچی در هستی کشف شده اند. در قسمت لاک حلزون از زاویه فی استفاده شده است. شاخ و برگ درخت ها به صورت تصادفی در جهات مختلف رشد نمی کنند. اندازه گیری زاویه شاخه ها نشان می دهد که در الگوی رشد آن ها، نظمی شبیه دنباله فیبوناچی و نسبت طلایی وجود دارد. درختان با پیروی از این نوع الگوی رشد، قادرند درصد بیشتری از نور خورشید را جذب کنند.

اعداد فیبوناچی, سری فیبوناچی,عجایب اعداد فیبوناچی

نسبت طلایی (1.618) در ساختار آفتابگردان نیز بکار رفته است

دانه های آفتابگردان به شکل مارپیچ هایی روبروی هم رشد می کنند. طبق تحقیقات انجام شده نسبت قطر هر مارپیچ به مارپیچ بعدی 1.618 است. حتی در ساختار شکل گوش ما هم از این اعداد تبعیت شده است.

نسبت طلایی (1.618) در آناتومی بدن انسان نیز بکار رفته است. اگر قد خود اعداد فیبوناچی و اسرار آن را بر فاصله عمودی ناف تا نوک انگشتان خود تقسیم کنید، تقریبا عدد 1.618 را بدست می‌آورید. با تقسیم طول بازوی خود از نوک انگشت بزرگ تا بالای شانه، بر فاصله نوک انگشت بزرگ تا آرنج خود نیز به این نسبت می‌رسید. از آنجایی که این نسبت در بسیاری از اندازه‌های بدن انسان وجود دارد، از آن به نام نسبت الهی نیز یاد می‌شود.

علاوه بر طبیعت، از زمان باستان بسیاری از هنرمندان و معماران نیز از رابطه‌های ریاضی و هندسی در آثار خود استفاده می‌کردند. برای مثال می‌توان به آثار تاریخی باقی مانده از دوران مصر باستان، یونان و رم اشاره کرد. مثلا معبد معروف پارتنون بهترین مثال از کاربرد نسبت طلایی (1.618) است. نسبت عرض به طول پنجره‌های مستطیل اعداد فیبوناچی و اسرار آن شکل معبد همگی برابر نسبت طلایی است. در اهرام مصر نیز این نسبت بخوبی رعایت شده است. طول هر ضلع قاعده هرکدام از اهرام به ارتفاع آن، معادل نسبت طلایی می‌باشد.

اعداد فیبوناچی و اسرار آن

سپارنده دانش نزد غیر اهل آن، مانندآویزنده گوهر و مروارید و طلا بر گردن خوکان است . [پیامبر خدا صلی الله علیه و آله]

سعید[0]

اعداد فیبوناچی و نسبت طلایی
آشنایی با نسبت طلایی،عدد طلایی(عدد فی)،دنباله فیبوناتچی،حد دنباله فیبوناتچی،کاربرد نسبت طلایی وعدد طلایی و روش محاسبه ی آن

رشته اعداد فیبوناتچی:
لئوناردو فیبوناچی ایتالیایی حدود سال 1200 میلادی مساله ای طرح کرد : فرض کنید که یک جفت خرگوش نر و ماده در پایان هر ماه یک جفت خرگوش نر و ماده جدید بدنیا بیاورند . اگر هیچ خرگوشی از بین نرود , در پایان یک سال چند جفت خرگوش وجود دارد؟؟؟

معمای زاد و ولد خرگوش:در واقع فیبوناچی در سال 1202 به مسئله عجیبی علاقمند شد. او می خواست بداند اگر یک جفت خرگوش نر و ماده داشته باشد و رفتاری برای زاد و ولد آنها تعریف کند در نهایت نتیجه چگونه خواهد شد. فرضیات اینگونه بود :

- شما یک جفت خرگوش نر و ماده اعداد فیبوناچی و اسرار آن دارید که همین الآن بدنیا آمده اند.
- خرگوشها پس از یک ماه بالغ می شوند.
- دوران بارداری خرگوشها یک ماه است.
- هنگامی که خرگوش ماده به سن بلوغ می رسد حتما" باردار می شود.
- در هر بار بارداری خرگوش ماده یک خرگوش نر و یک ماده بدنیا می آورد.
- خرگوش ها هرگز نمی میرند.

حال سئوال اینجاست که پس از گذشت یکسال چه تعداد خرگوش نر و چه تعداد خرگوش ماده خواهیم داشت؟ (پاسخ را شما بدهید)
فیبوناچی تصمیم گرفت برای محاسبه تعداد انها Fn را تعداد جفتها در شروع ماه N ام فرض کند.

حد دنباله فیبوناتچی:
حالا اگر در این دنباله هر عدد را به عدد قبلیش تقسیم کنیم یک همچین سری را خواهیم داشت:

1/1 = 1, 2/1 = 2, 3/2 = 1?5, 5/3 = 1?666. 8/5 = 1?6, 13/8 = 1?625, 21/13 = 1?61538 و .

که هرچه جلو بریم بنظر می اید که به یک عدد مخصوص میرسیم . برای بهتر دیدن موضوع به نمودار زیر توجه کنید:
ما این عدد را عدد طلایی مینامیم که این عدد تقریبا برابر است با : . 1.618033
به عبارتی دیگر حد این دنباله به عدد طلایی می رسد.

بعدها محاسبات و استدلال های ریاضی نشان داد که این سری همگرا به سمت نسبت طلایی می باشد و جمله عمومی آنرا با بتقریب می توان اینگونه نمایش داد :
fn = Phi n / 5½
O
که در آن Phi عدد طلایی میباشد. البته فرمول های دقیق دیگری وجود دارند که اعداد سری و یا اعداد بعدی (Successor) این سری را نمایش می دهند که دراین مطلب به آن نخواهیم پرداخت.

تصویر

عدد طلایی(عدد فی):
قبلا در مورد چگونگی بدست اوردن عدد طلایی از طریق دنباله فیبوناچی صحبت شد.حالا در مورد راههای دیگر بدست اوردن این عدد صحبت میکنیم .

در زمانهای قدیم هنرمندان یونانی به خوبی ریاضی دانان مستطیل زیبایی می شناختند که از نظر هنری عرض 1 و طول X داشت در این مستطیل هر وقت مربعی به ضلع 1 را از ان جدا کنند باز همان مستطیل با همان نسبتهای مستطیل اصلی باقی میماند .
چون مستطیل جدید عرض 1-X و طول 1 دارد و چون نسبت ضعلهای دو مستطیل با هم برابر است :
x^2-x-1=0
حالا اگر در معادله ی بالا برای X حل کنیم ریشه ی مثبت معادله همان عدد طلایی است:
x=(1+5^0.5)/2

تصویر

آشنایی با نسبت طلایی:Golden Ratio

پاره خطی را در نظر بگیرید و فرض کنید که آنرا بگونه ای تقسیم کنید که نسبت بزرگ به کوچک معادل نسبت کل پاره خط به قسمت بزرگ باشد. به شکل توجه کنید. اگر این معادله ساده یعنی a2=a*b+b2 را حل کنیم (کافی است بجای b عدد یک قرار دهیم بعد a را بدست آوریم) به نسبتی معادل تقریبا" 1.61803399 یا 1.618 خواهیم رسید.

شاید باور نکنید اما بسیاری از طراحان و معماران بزرگ برای طراحی محصولات خود امروز از این نسبت طلایی استفاده می کنند. چرا که بنظر میرسد ذهن انسان با این نسبت انس دارد و راحت تر آنرا می پذیرد. این نسبت نه تنها توسط معماران و مهندسان برای طراحی استفاده می شود بلکه در طبیعت نیز کاربردهای بسیاری دارد که به تدریج راجع به آن صحبت خواهیم کرد.

جواهر هندسه:
کپلر (Johannes Kepler 1571-1630) منجم معروف نیز علاقه بسیاری به نسبت طلایی داشت بگونه ای که در یکی از کتابهای خود اینگونه نوشت : "هندسه دارای دو گنج بسیار با اهمیت می باشد که یکی از آنها قضیه فیثاغورث و دومی رابطه تقسیم یک پاره خط با نسبت طلایی می باشد. اولین گنج را می توان به طلا و دومی را به جواهر تشبیه کرد".
تحقیقاتی که کپلر راجع به مثلثی که اضلاع آن به نسبت اضلاع مثلث مصری باشد به حدی بود که امروزه این مثلث به مثلث کپلر نیز معروف می باشد. کپلر پی به روابط بسیار زیبایی میان اجرام آسمانی و این نسبت طلایی پیدا کرد.


کاربرد های نسبت طلایی:اهرام مصر یکی از قدیمی ترین ساخته های بشری است که در آن هندسه و ریاضیات بکار رفته شده است. مجموعه اهرام Giza در مصر که قدمت آنها به بیش از 2500 سال پیش از میلاد می رسد یکی از شاهکارهای بشری است که در آن نسبت طلایی بکار رفته است. به این شکل نگاه کنید که در آن بزرگترین هرم از مجموعه اهرام Giza خیلی ساده کشیده شده است.

مثلث قائم الزاویه ای که با نسبت های این هرم شکل گرفته شده باشد به مثلث قائم مصری یا Egyptian Triangle معروف هست و جالب اینجاست که بدانید نسبت وتر به ضلع هم کف هرم معادل با نسبت طلایی یعنی دقیقا" 1.61804 می باشد. این نسبت با عدد طلایی تنها در رقم پنجم اعشار اختلاف دارد یعنی چیزی حدود یک صد هزارم. باز توجه شما را به این نکته جلب می کنیم که اگر معادله فیثاغورث را برای این مثلث قائم الزاویه بنویسم به معادله ای مانند phi2=phi+b2 خواهیم رسید که حاصل جواب آن همان عدد معروف طلایی خواهد بود. (معمولا" عدد طلایی را با phi نمایش می دهند)

طول وتر برای هرم واقعی حدود 356 متر و طول ضلع مربع قاعده حدودا" معادل 440 متر می باشد بنابر این نسبت 356 بر 220 (معادل نیم ضلع مربع) برابر با عدد 1.618 خواهد شد.

تصویر

هرم " ریم پاپیروس " در اهرام ثلاثه یکی از قدیمی ترین مثالها از استفاده از این عدد در ساخت بناهاست .
اگر عرض یکی از شالهای این هرم را بر فاصله نوک هرم تا نقطه وسط کف هرم تقسیم کنیم جواب 1.6 خواهد بود .
باستان شناسان مطمئن نیستند که ایا این کار از قصد انجام شده یا اتفاقی بوده است !
مطلب جالب دیگر این است که اگر قطر این هرم را به دوبرابر ارتفاع ان تقسیم کنیم جواب عدد پی (3.14) خواهد بود .

مثال دیگر در بنای پارتنون در یونان وجود دارد .برای ساخت این بنا که در 440 BC ساخته شده است از مستطیل طلایی استفاده شده است.

تصویر

نسبت طلایی در ایران

برج و میدان آزادی:طول بنا 63 و عرض ان 42 است که 5/1=42: 63 و به عدد طلایی نزدیک می‌باشدسبک معماری آن نیزطاق بزرگی است که تلفیقی از سبک هخامنشی و ساسانی و اسلامی است که منحنی آن با الهام از طاق کسری معماری ایران باستان را تداعی می‌نماید.

قلعه دالاهو، کرمانشاه:خطی از استحکامات به طول دو و نیم کیلومتر و عرض چهار متر با قلوه و لاشه سنگ به همراه ملات دیوار گچ را می‌سازد. سرتاسر نمای خارجی این دیوار با مجموعه‌ای از برج‌های نیم دایره‌ای شکل تقویت شده است. می دانیم6/1=5/2: 4 که همان عدد طلایی است.

بیستون از دوره هخامنشی، کرمانشاه:به طول 5 کیلومتر و عرض 3 کیلومتراست. اعداد5و3هردوجزودنباله فیبوناتچی هستندو6/1=5:3 و ابعاد برجسته کاری 18 در 10 پاست که قامت "داریوش"5 پا و 8 اینچ (170 سانتیمتر) بلندی داردکه هر دو اعداد فیبوناتچی هستند.

پل ورسک در مازندران: این پل بر روی رودخانه ورسک در مجاورت سواد کوه بنا شد. بلندی این پل 110 متر است وطول قوس آن 66 متر می‌باشد(6/1 = 66: 110).

مقبره ابن سینا:آرامگاه دروسط تالاری مربع شکل قرارگرفته که پله مدور (مارپیچ فیبوناتچی) و پایه‌های دوازده گانه برج را احاطه کرده‌اند. سطح حیاط باسه پله سراسری به ایوان متصل است. ایوان با دری به ارتفاع 2/3 متر و عرض 9/1 متر به سرسرای آرامگاه متصل است (6/1=9/1: 2/3)در دو طرف سرسرا دو تالار قرار دارد یکی در جنوب که تالار سخنرانی و اجتماعات است. و یکی در شمال که کتابخانه آرامگاه است. طول تالار کتابخانه 45/9 متر وعرض آن 75/5 متر است(6/1=75/5: 45/9)

ارگ بم:این بنا 300 متر طول و 200 متر عرض داشته و از 2 قسمت تشکیل شده است. این دژ 5 شیوه ساختاری از خشت خام دارد. (3 و 2 و 5 اعداد دنباله فیبوناتچی هستند)

میدان نقش جهان و مسجد لطف الله:در کتب اخیر، نویسنده جیسون الیوت بر این باور است که نسبت طلایی توسط طراحان میدان نقش جهان و در مجاورت مسجد لطف الله مورد استفاده قرار گرفته است

عدد فی و معماری اسلامی

گفته می‌شود که: "اگر فاصله کعبه را در شهر مکه تا قطب شمال و جنوب اندازه گرفته و به هم تقسیم کنید عدد فی بدست خواهد آمد. برای اطمینان می‌توانید از نرم‌افزار Google Earth استفاده کنید و به این حقیقت دست یابید." کعبه در لتیتودِ 21?4224945 می‌باشد که به تناسبِ (90-21?4224945)/(90+21?4224945) برابر با 1?62476739 می‌باشد که با عددِ فی تطابق دارد.

تاکنون نه تنها در کتاب رمز داوینچی بلکه پیام‌ها، اسرار مذهبی و کهن در دیوارهای زیارتگاه‌های اسلامی به صورت رمز قرار مشاهده شده است. بسیاری از کاشیکاری‌های بناهای اسلامی متعلق به ? 500?سال پیش توانسته‌اند الگوهای فراوان ریاضی پیدا کنند که تا دهه ?1970? برای غربی‌ها ناشناخته بوده است. اساس یک طراحی هندسی برای نشان دادن یک نماد از علم " ماندالا" است که به عقیده بسیاری از ملت شرق به تعمق و اندیشه کمک می‌کند خلق بسیاری از نامحدودها با استفاده از مثلث و مستطیل طلایی از این گونه است

کیث کریچلو" ? keith Critchlow?نویسنده کتاب "الگوهای ریاضی اسلامی" چنین ادعا می‌کند: ما دریافته‌ایم که اسلام در دوره قرون وسطی تا چه اندازه پیشرفته بوده است. نام این الگوهای ریاضی پیچیده در آن دوران "شیمی بیضی متقارن ممنوعه" می‌نامند. آنها از الگوی کاشی‌های هرمی برخوردارند و با چرخش یک سوم در آن قابل شناسایی هستند. همین قانون برای کاشی‌های مستطیلی نیز پیروی می‌کند که با چرخش یک چهارم قابل شناسایی هستند ما برای کاشی‌های شش گوش چرخش یک ششم لازم است. اما این شبکه‌ها اعداد فیبوناچی و اسرار آن بدون وجود پنج‌ضلعی‌ها کامل نمی‌شوند و بدون رعایت فاصله میان آنها در کنار هم جفت نمی‌شوند و نمی‌توان آنها را با با چرخش یک پنجم در کنار هم قرار داد. آقای لو توانست در دیوار یکی از زیارتگاه‌های ایران دو نوع از این کاشیکاری‌ها بزرگ را که با کاشی‌های هم‌شکل ساخته شده بود، کشف کند به گونه‌ای که ظاهراً از نسبت طلایی فیثاغورثی تبعیت می‌کردند. کریچلو در این‌باره می‌گوید: سازندگان بنا بطور حتم از این نسبت خبر داشتند.

در سال ? 1973?سر "راجر پنروس" ? Roger Penrose?ریاضی‌دان برجسته غربی توانست با در نظر گرفتن این پنج‌ضلعی‌ها الگویی پنج تایی با شکلی بسازد که از آن به عنوان کیت و یا دارت نام برده می‌شود. او نخستین غربی بود که این حساب را کشف کرد و در آن زمان گمان می‌کرد نخستین کسی است به این موضوع پی برده‌است. خلاقیت وی به خلق خواص ریاضیاتی منجر شد هر دسته می‌تواند حاوی تعداد مشخصی‌از کیت‌ها و دارت‌هایی باشد که می‌توانند تا بی‌نهایت و بدون تکرارپذیری الگوهای کوچکتری از کیتها و دارت‌ها بسازند. هر چقدر تعداد این اشکال ریز افزایش پیدا کند آنگاه نسبت کیت‌ها به دارت‌ها به نسبتی موسوم به "نسبت طلایی" می‌رسد.

"گلرو نجیب اوغلو" ? Gulru Nacipoglu?یکی از اساتید دانشگاه هاروارد می‌گوید: خلقت انسان مشابه هم است و شکل مشخصی دارد که از عجایب خلقت خداوندی است این که این الگوها به کجا ختم می‌شوند و به صورت هوشمندانه‌ای در درها و پنجره‌ها به کار رفته‌اند مسئله‌ای است که نمی‌توان مشخص کرد. به گفته وی، با وجود این که الگوی پنروس به قرن ? 14?یا ? 15?بازمی‌گردد اما این اشکال کاشیکاری در دنیای اسلام از صدها سال قبل از آن به کار گرفته شده است. در منبتکاری‌های ایران در قرن پانزدهم و اوایل شانزدهم فهرستی از بسیاری از این طرح‌ها قرار دارند که ممکن است سرنخی برای شکوه ریاضیات اسلامی در مساجد ایران و ترکیه و مدارس بغداد و زیارتگاه‌های هند و افغانستان باشد. دانشمندان اکنون می‌دانند که مسلمانان در آن دوران می‌توانستند معادلات جبری به توان ? 3?و فراتر از آن را حل کنند معادلاتی که بسیار دشوارتر از معادله دو مجهولی است و اساس جبر به شمار می‌رود. مسلمانان همچنین دارای حسابگرهای مکانیکی بودند و در علم داروشناسی و ستاره شناسی پیشرفته‌تر از اروپایی‌ها بوده‌اند اما با این حال جای تاسف است که تعداد اندکی از این دانشمندان درباره یافته‌های خود کتاب و یا اثر به رشته تحریر درآورده‌اند".

نسبت طلایی در خوشنویسی

استاد میرعماد با پالایش خطوط پیشینیان و زدودن اضافات و ناخالصی‌ها از پیکره نستعلیق و نزدیک کردن شگرف نسبت‌های اجزای حروف و کلمات، به اعلا درجه زیبایی یعنی نسبت طلایی رسید و قدمی اساسی در اعتلای هنر نستعلیق برداشت. با بررسی اکثریت قاطع حروف و کلمات میرعماد متوجه می‌‌شویم که این نسبت به عنوان یک الگو در تار و پود حروف و واژه‌ها وجود دارد و زاویه 448/63 درجه که مبنای ترسیم مستطیل طلایی است، در شروع قلم گذاری و ادامه رانش قلم، حضوری تعیین کننده دارد. این مهم قطعاً در سایه شعور و حس زیبایی‌شناسی وی حاصل آمده، نه آگاهی از فرمول تقسیم طلایی از دیدگاه هندسی و علوم ریاضی. میرعماد این نسبت‌ها را نه تنها در اجزای حروف بلکه در فاصله دو سطر و مجموعه دو سطر چلیپاها و کادرهای کتابت و قطعات رعایت می‌‌کرده است.

نسبت طلایی در بدن انسان:دانشمندان گذشته نیز از نسبت طلایی استفاده های زیادی کرده اند. به عنوان مثال لئوناردو داوینچی در ترسیم نقاشی معروف خود از بدن انسان از نسبت طلایی بهره گرفته است.

در بدن انسان مثالهای بسیار فراوانی از این نسبت طلایی وجود دارد. در شکل زیر نسبت M/m یک نسبت طلایی است که در جای جای بدن انسان می توان آنرا دید. به عنوان مثال نقاطی از بدن که دارای نسبت طلایی هستند:

تصویر

نسبت قد انسان به فاصله ناف تا پاشنه پا

نسبت فاصله نوک انگشتان تا آرنج به فاصله مچ تا آرنج

نسبت فاصله شانه تا بالای سر به اندازه سر

نسبت فاصله ناف تا بالای سر به فاصله شانه تا بالای سر

نسبت فاصله ناف تا زانو به فاصله زانو تا پاشنه پا

نسبت فاصله بند انگشتان و مفاصل دست

تصویر

نسبت طلایی در عکاسی:
ترکیب بندی تصویر، در کتابها و مجلات تخصصی عکاسی، اغلب به شکل یک نسخه تجویزی ارائه میشود. انگار که پیروی از تعدادی قاعده میتواند نتیجه قانع کننده ای را تضمین کند. شاید بهتر باشد این قواعد را تنها به عنوان چکیده ایده هایی در نظر گرفت که عکاسان (و البته نقاشان و سایر هنرمندان قرنها پیش از اختراع دوربین) آنها را برای خلق یک تصویر تاثیر گذار، مفید یافته اند.

تصویر
تصویر

هر ترکیب بندی عکسی را میتوان کارآمد دانست به شرط این که عناصر صحنه به طور موثر با بینندگان مورد نظر آن عکس، ارتباط برقرار کند. در اغلب موارد، نکته اساسی در شناسایی عناصر کلیدی صحنه نهفته است تا با تنظیم محل دوربین و میزان نور دهی، آنها را از دل سایر اطلاعات تصویری متفرقه، بیرون بکشید. همین اشیاء مزاحم، بسیاری از عکسها را خراب میکنند.

مقالات مرتبط

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

برو به دکمه بالا